Combinatorics

Semestral Examination

Instructions: All questions carry ten marks.

1. Let \mathcal{D} be a $3-(v, k, \lambda)$ design such that its derived design at a point is a symmetric design. Then show that
(a) $\lambda(v-2)=(k-1)(k-2)$ and
(b) any two blocks of \mathcal{D} meet in 0 or $\lambda+1$ points.
2. Let $P G^{2}(4)$ denote the projective plane of order 4 . Let $S=\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}$ be a subset of points of this plane such that no three of P_{i} 's are collinear. Prove that there exists a unique set \mathcal{O} of six points that contains S and no three points of \mathcal{O} are collinear.
3. Let a, d be natural numbers. If $b=\left\lceil\frac{a}{d}\right\rceil$ or $\left\lfloor\frac{a}{d}\right\rfloor$, then prove that

$$
\left\lceil\frac{a-b}{d-1}\right\rceil \leq\left\lceil\frac{a}{d}\right\rceil \text { and }\left\lfloor\frac{a-b}{d-1}\right\rfloor \geq\left\lfloor\frac{a}{d}\right\rfloor
$$

4. Let G denote the group $\mathbb{Z} / 21 \mathbb{Z}$. Show that there exists a subset $S \subset G$ of cardinality 5 such that $2 S=S$ and the collection $\mathcal{B}=\{S+a \mid a \in G\}$ form the projective plane of order 4, with elements of G as points.
