Combinatorics

Semestral Examination

Instructions: All questions carry ten marks.

- 1. Let \mathcal{D} be a $3 (v, k, \lambda)$ design such that its derived design at a point is a symmetric design. Then show that
 - (a) $\lambda(v-2) = (k-1)(k-2)$ and
 - (b) any two blocks of \mathcal{D} meet in 0 or $\lambda + 1$ points.
- 2. Let $PG^2(4)$ denote the projective plane of order 4. Let $S = \{P_1, P_2, P_3, P_4\}$ be a subset of points of this plane such that no three of P_i 's are collinear. Prove that there exists a unique set \mathcal{O} of six points that contains S and no three points of \mathcal{O} are collinear.
- 3. Let a, d be natural numbers. If $b = \lfloor \frac{a}{d} \rfloor$ or $\lfloor \frac{a}{d} \rfloor$, then prove that

$$\lceil \frac{a-b}{d-1} \rceil \leq \lceil \frac{a}{d} \rceil \text{ and } \lfloor \frac{a-b}{d-1} \rfloor \geq \lfloor \frac{a}{d} \rfloor.$$

4. Let G denote the group $\mathbb{Z}/21\mathbb{Z}$. Show that there exists a subset $S \subset G$ of cardinality 5 such that 2S = S and the collection $\mathcal{B} = \{S+a \mid a \in G\}$ form the projective plane of order 4, with elements of G as points.